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Abstract: This paper is concerned with the oscillation of solutions to a class of first-order differential equations with
variable coefficients and a general delay argument. New oscillation criteria are established, which improve and extend
many known results reported in the literature. A couple of illustrative examples are given to show the efficiency of the
newly obtained results. In particular, it is shown that our criteria partially fulfill a remaining gap in a recent sharp result
by Pituk et al. [31].
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1. Introduction
In this paper, we are concerned with the oscillation of the first-order delay differential equation

x′(t) + p(t)x(τ(t)) = 0, t ≥ t0 ≥ 0, (1.1)

where p, τ ∈ C([t0,∞), [0,∞)) , τ(t) ≤ t , and lim
t→∞

τ(t) = ∞ .
Equation (1.1) is termed oscillatory if each of its solutions has infinitely many zeros tending to infinity.

Otherwise, Eq. (1.1) is called nonoscillatory. Throughout this paper and without further mention, we shall
assume that there exists a nondecreasing continuous function θ(t) such that τ(t) ≤ θ(t) for t ≥ t1 , t0 ≥ t1 .
Moreover, we will make use of the following notation:

δ = lim inf
t→∞

∫ t

τ(t)

p(w) dw, (1.2)

δ∗ = lim inf
t→∞

∫ t

θ(t)

p(w) dw, (1.3)

and

ρ =

{
1, δ∗ = 0,
λ(δ∗)− ϵ, δ∗ > 0, ϵ ∈ (0, λ(δ∗)),

(1.4)

where λ(ξ) stands for the smaller real root of the equation λ = eλξ .
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In dynamical models, delay and oscillation effects are often formulated by means of external sources
and/or nonlinear diffusion, perturbing the natural evolution of related systems; see, e.g., [24–26]. Since the
pioneering work of Myshkis [28], the oscillation theory of delay differential equations has received a great deal
of attention, see the monographs [1, 15, 16] as well as the papers cited in this work for a considerable account
of results. In particular, oscillation properties of first-order differential equations with delayed argument have
numerous applications in the study of higher-order differential equations with deviating arguments; see, e.g.,
the papers [3, 7, 27] for more details.

In view of the classical liminf oscillation criterion

δ >
1

e

due to Koplatadze and Chanturija [21], it gives sense to consider only the case when

0 ≤ δ ≤ 1

e
.

Most of the research has been done in the case when the delay is nondecreasing. As a starting point, the classical
limsup oscillation criterion

lim sup
t→∞

∫ t

τ(t)

p(w)dw > 1 (1.5)

due to Ladas [23] has commonly been referred. Consequently, major research has been devoted to improving
the preceding condition (1.5) so that the value at the right-hand side is as close to the threshold value 1/e as
possible; see, e.g., the papers [10–13, 18–20, 22, 23, 29, 30, 32].

A sharp result in certain sense has been given in [13, Theorem 4] by Gárab, Pituk, and Stavroulakis. It
has been proven there that Eq. (1.1) with constant delay and p(t) slowly varying at infinity is oscillatory if
δ > 0 and

lim sup
t→∞

∫ t

τ(t)

p(w)dw >
1

e
.

For some further works on this particular class of Eq. (1.1) with p(t) enjoying the slowly varying property, see
[12, 14, 30].

Very recently, Pituk, Stavroulakis and Stavroulakis Jr. [31] found, for nondecreasing τ , the explicit value
of the bound at the right-hand side of (1.5) depending on δ . As a result, they improved condition (1.5) and
established the oscillation criterion

lim sup
t→∞

∫ t

τ(t)

p(w)dw > K(δ), (1.6)

where δ ∈
[
0, 1

e

]
and

K(δ) =


1, δ = 0,
2δ + 2

λ(δ) − 1, δ ∈
(
0, ln 2

2

]
,

2δ − 2
λ(δ) −

1
λ(δ)W−1

(
−λ(δ)

e2

)
, δ ∈

(
ln 2
2 , 1

e

]
,
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where W−1 is the secondary real branch of the Lambert W function. It is important to notice that the constant
K(δ) in (1.6) is sharp in the sense that a nonoscillatory counterexample can be found if

lim sup
t→∞

∫ t

τ(t)

p(w)dw ≤ K(δ).

In the paper, we confirm (see Example 3.2) that condition (1.6) is not necessary for the oscillation of Eq. (1.1)
when δ = 0 and that Ladas criterion (1.5) can be improved in this case. This finding points out that establishing
new oscillation conditions for Eq. (1.1) is still of importance.

On the other hand, it is worth noting that the dynamics of solutions of equations with nonmonotone
arguments can be completely different from those with monotone ones. As a matter of fact, we recall a
remarkable result due to Braverman and Karpuz [4] who showed that the well-known Ladas criterion (1.5)
is no longer applicable in the nonmonotone case and there is no constant L such that

lim sup
t→∞

∫ t

τ(t)

p(w)dw > L

implies Eq. (1.1) to be oscillatory. Consequently, the oscillation problem of Eq. (1.1) with nonmonotone retarded
arguments has attracted the interest of many mathematicians and both iterative and noniterative oscillation
criteria have been established; see, e.g, the papers [2, 4–6, 9, 17, 22] and those cited therein. For an easy
reference, we give a brief summary of some recently published oscillation results.

In 2015, Infante, Koplatadze and Stavroulakis [17] proved that Eq. (1.1) is oscillatory if

lim sup
t→∞

∫ t

θ(t)

p(w) e
∫ θ(t)

τ(w)
p(w1) e

∫w1
τ(w1)

p(w2)dw2
dw1dw > 1, (1.7)

or

lim sup
ϵ→0+

(
lim sup
t→∞

∫ t

θ(t)

p(w)e
(λ(δ)−ϵ)

∫ θ(t)

τ(w)
p(w1)dw1dw

)
> 1. (1.8)

In 2020, Chatzarakis and Jadlovská [5] established the condition

lim sup
t→∞

∫ t

φ(t)

p(w)e
∫ φ(t)

τ(w)
p(w1) e

∫w1
τ(w1)

Ψn(w2)dw2
dw1dw > 1, (1.9)

where
φ(t) = sup

u≤t
τ(u) (1.10)

and

Ψ0(t) = p(t)

(
1 +

∫ t

τ(t)

p(w)e
∫ t
τ(w)

p(w1) e
λ(δ)

∫w1
τ(w1)

p(w2)dw2
dw1dw

)
,

Ψn(t) = p(t)

(
1 +

∫ t

τ(t)

p(w)e
∫ t
τ(w)

p(w1) e

∫w1
τ(w1)

Ψn−1(w2)dw2
dw1dw

)
, n = 1, 2, . . . .
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In 2022, Attia and El-Morshedy [2] obtained the condition

lim sup
t→∞

(
n∑

r=1

(
r∏

r1=2

C
(
θr1−1(t)

))
Ωn

r (t)

)
> 1−B(δ∗), n ∈ N, (1.11)

where

B(δ∗) =
1− δ∗ −

√
1− 2δ∗ − δ∗2

2
, 0 ≤ δ∗ ≤ 1

e
,

C(t) =
1

1−
∫ t

θ(t)
p(w1) exp

(∫ θ(t)

τ(w1)
p(w2)

1−Ω1
1(w2)

dw2

)
dw1

and

Ωn
i (t) =

∫ t

θ(t)

p(w1)

∫ θ(t)

τ(w1)

p(w2)

∫ θ2(t)

τ(w2)

. . .

∫ θi−1(t)

τ(wi−1)

p(wi)dwi dwi−1 . . . dw1, i = 1, . . . , n− 1,

Ωn
n(t) =

∫ t

θ(t)

p(w1)

∫ θ(t)

τ(w1)

p(w2)

∫ θ2(t)

τ(w2)

. . .

∫ θn−1(t)

τ(wn−1)

p(wn)e
ρ
∫ θn(t)

τ(wn)
p(wn+1)dwn+1dwn dwn−1 . . . dw1.

The objective of this work is to obtain new oscillation criteria for Eq. (1.1), which would improve the
above mentioned ones in both cases of monotone and nonmonotone arguments. Two illustrative examples are
presented to demonstrate the power and efficiency of our results.

2. Main results
We start with the following lemmas, which will be of utmost importance in establishing our main results. All
our results are formulated in terms of constants (1.2)–(1.4).

Lemma 2.1 (see [11, Lemma 2.1.2] and [2, Lemma 2.1]) Assume that x(t) is an eventually positive so-
lution of Eq. (1.1). Then

x(θ(t))

x(t)
≥ ρ for all sufficiently large t . (2.1)

Lemma 2.2 Assume that x(t) is an eventually positive solution of Eq. (1.1) and there exists a continuous
positive function Q0(t) such that

x(τ(t))

x(t)
≥ Q0(t). (2.2)

Then, for any n ∈ N and t sufficiently large,

x(τ(t))

x(t)
≥ Qn(t), (2.3)

where

Qn(t) =
e
∫ θ(t)

τ(t)
p(w)Qn−1(w)dw

1−
∫ t

θ(t)
p(w)e

∫ θ(t)

τ(w)
p(w1)Qn−1(w1)dw1dw

. (2.4)
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Proof Integrating (1.1) from θ(t) to t , we obtain

x(t)− x(θ(t)) +

∫ t

θ(t)

p(w)x(τ(w))dw = 0. (2.5)

Dividing (1.1) by x(t) and integrating the resulting inequality from w to t , t ≥ w , we have

x(w) = x(t)e
∫ t
w

p(w1)
x(τ(w1))

x(w1)
dw1 . (2.6)

This, together with (2.5), leads to

x(t)− x(θ(t)) + x(θ(t))

∫ t

θ(t)

p(w)e
∫ θ(t)

τ(w)
p(w1)

x(τ(w1))

x(w1)
dw1dw = 0. (2.7)

Therefore,
x(θ(t))

x(t)
=

1

1−
∫ t

θ(t)
p(w)e

∫ θ(t)

τ(w)
p(w1)

x(τ(w1))

x(w1)
dw1dw

. (2.8)

From (2.6), we see that

x(τ(t))

x(t)
=

x(τ(t))

x(θ(t))

x(θ(t))

x(t)
=

e
∫ θ(t)

τ(t)
p(w)

x(τ(w))
x(w)

dw

1−
∫ t

θ(t)
p(w)e

∫ θ(t)

τ(w)
p(w1)

x(τ(w1))

x(w1)
dw1dw

, (2.9)

which in view of (2.8) leads to

x(τ(t))

x(t)
≥ e

∫ θ(t)

τ(t)
p(w)Q0(w)dw

1−
∫ t

θ(t)
p(w)e

∫ θ(t)

τ(w)
p(w1)Q0(w1)dw1dw

= Q1(t). (2.10)

Substituting again (2.10) into (2.9) we get

x(τ(t))

x(t)
≥ e

∫ θ(t)

τ(t)
p(w)Q1(w)dw

1−
∫ t

θ(t)
p(w)e

∫ θ(t)

τ(w)
p(w1)Q1(w1)dw1dw

= Q2(t).

A simple induction completes the proof. 2

Lemma 2.3 Assume that δ∗ > 0 and x(t) is an eventually positive solution of Eq. (1.1). If

lim inf
t→∞

∫ t

θ(t)

p(w)

∫ θ(t)

τ(w)

p(w1)e
(λ(δ∗)−ϵ)

∫ θ2(t)

τ(w1)
p(w2)dw2dw1dw ≥ β > 0 (2.11)

for some ϵ ∈ (0, λ(δ∗)) , then

lim inf
t→∞

x(t)

x(θ(t))
≥

1− δ∗ −
√
(1− δ∗)

2 − 4β

2
. (2.12)
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Proof First, we claim that

x(θ(t))

x(θ2(t))
>

R(t)

1−
∫ t

θ(t)
p(w)dw

for all sufficiently large t , (2.13)

where θ2(t) = θ(θ(t)) and

R(t) =

∫ t

θ(t)

p(w)

∫ θ(t)

τ(w)

p(w1)e
(λ(δ∗)−ϵ)

∫ θ2(t)

τ(w1)
p(w2)dw2dw1dw.

Integrating (1.1) from τ(w) to θ(t) for θ(t) ≤ w ≤ t , we get

x(θ(t))− x(τ(w)) +

∫ θ(t)

τ(w)

p(w1)x(τ(w1))dw1 = 0.

Substituting this into (2.5), we obtain

x(t)− x(θ(t)) + x(θ(t))

∫ t

θ(t)

p(w)dw +

∫ t

θ(t)

p(w)

∫ θ(t)

τ(w)

p(w1)x(τ(w1))dw1dw = 0. (2.14)

In view of θ2(t) ≥ τ(w1) for τ(w) ≤ w1 ≤ θ(t) and θ(t) ≤ w ≤ t , it follows from (2.6) that

x(τ(w1)) = x(θ2(t))e
∫ θ2(t)

τ(w1)
p(w2)

x(τ(w2))

x(w2)
dw2 .

Substituting into (2.14), we obtain

x(t)− x(θ(t)) + x(θ(t))

∫ t

θ(t)

p(w)dw

+ x(θ2(t))

∫ t

θ(t)

p(w)

∫ θ(t)

τ(w)

p(w1)e
∫ θ2(t)

τ(w1)
p(w2)

x(τ(w2))

x(w2)
dw2dw1dw = 0.

(2.15)

Using Lemma 2.1 and δ∗ > 0 , we obtain

x(θ(t)) ≥ x(t) + x(θ(t))

∫ t

θ(t)

p(w)dw

+ x(θ2(t))

∫ t

θ(t)

p(w)

∫ θ(t)

τ(w)

p(w1)e
∫ θ2(t)

τ(w1)
p(w2)(λ(δ

∗)−ϵ)dw2dw1dw,

(2.16)

where ϵ > 0 is sufficiently small. Consequently,

x(θ(t))

x(θ2(t))
>

∫ t

θ(t)
p(w)

∫ θ(t)

τ(w)
p(w1)e

∫ θ2(t)

τ(w1)
p(w2)(λ(δ

∗)−ϵ)dw2dw1dw

1−
∫ t

θ(t)
p(w)dw

=
R(t)

1−
∫ t

θ(t)
p(w)dw

.

6
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This completes the proof of (2.13) and so our claim holds. Now we will prove (2.12). Assume that 0 < δ∗∗ < δ∗

and 0 < β∗ < β are, respectively, any two numbers arbitrarily close to δ∗ and β . Then there exists T large
enough so that ∫ t

θ(t)

p(w)dw > δ∗∗ for t > T

and ∫ t

θ(t)

p(w)

∫ θ(t)

τ(w)

p(w1)e
∫ θ2(t)

τ(w1)
p(w2)(λ(δ

∗)−ϵ)dw2dw1dw > β∗ for t > T .

Substituting both the above estimates into (2.16), we obtain

x(θ(t)) > x(t) + δ∗∗x(θ(t)) + β∗x(θ2(t)). (2.17)

Consequently,
x(θ(t)) > b1x(θ

2(t)), (2.18)

where

b1 =
β∗

1− δ∗∗
.

Let T1 > T such that t = θ(T1) , and so ∫ T1

t

p(w)dw > δ∗∗

and ∫ T1

t

p(w)

∫ t

τ(w)

p(w1)e
∫ θ(t)

τ(w1)
p(w2)(λ(δ)−ϵ)dw2dw1dw > β∗.

By integrating Eq. (1.1) from t to T1 , and using the same arguments as above we obtain

x(t) > b1x(θ(t)). (2.19)

From this and (2.17), we get
x(θ(t)) > b2x(θ

2(t)),

where

b2 =
β∗

1− b1 − δ∗∗
.

Repeating this procedure we have
x(θ(t)) > bnx(θ

2(t)),

where

bn =
β∗

1− bn−1 − δ∗∗
.

Since {bn}n≥1 is strictly increasing and bounded, then

b2 − (1− δ∗∗) b+ β∗ = 0,

7
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where
lim
n→∞

bn = b.

Therefore,

x(θ(t))

x(θ2(t))
≥

1− δ∗∗ −
√
(1− δ∗∗)

2 − 4β∗

2

for all sufficiently large t .
Then, we see that

lim inf
t→∞

x(θ(t))

x(θ2(t))
≥

1− δ∗∗ −
√

(1− δ∗∗)
2 − 4β∗

2
.

Letting δ∗∗ → δ∗ and β∗ → β the last inequality implies that

lim inf
t→∞

x(t)

x(θ(t))
= lim inf

t→∞

x(θ(t))

x(θ2(t))
≥

1− δ∗ −
√
(1− δ∗)

2 − 4β

2
.

The proof is complete. 2

Remark 2.4 It is clear for δ∗ > 0 that

∫ t

θ(t)

p(w)

∫ θ(t)

τ(w)

p(w1)e
(λ(δ∗)−ϵ)

∫ θ2(t)

θ(w1)
p(w2)dw2dw1dw ≥

∫ t

θ(t)

p(w)

∫ θ(t)

θ(w)

p(w1)dw1dw.

By using similar arguments as in the proof of [11, Lemma 2.1.3], we arrive at

lim inf
t→∞

∫ t

θ(t)

p(w)

∫ θ(t)

τ(w)

p(w1)e
(λ(δ∗)−ϵ)

∫ θ2(t)

θ(w1)
p(w2)dw2dw1dw ≥ 1

2
δ∗2.

As a result, in Lemma 2.3, one can choose β = 1
2δ

∗2 . Consequently,

1− δ∗ −
√

(1− δ∗)
2 − 4β

2
=

1− δ∗ −
√
1− 2δ∗ − δ∗2

2
.

Therefore, we see that Lemma 2.3 improves [11, Lemma 2.1.3].

Now we are prepared to state the main results of the paper.

Theorem 2.5 Assume that δ∗ > 0 and there exists β > 0 satisfying (2.20) for some ϵ ∈ (0, λ(δ∗)) . If for
some n ∈ N0

lim sup
t→∞

∫ t

θ(t)

p(w)e
∫ θ(t)

τ(w)
Qn(w1)p(w1)dw1dw > 1−

1− δ∗ −
√
(1− δ∗)

2 − 4β

2
, (2.20)

where Q0(t) = λ(δ∗)− ϵ and {Qn(t)}n∈N is defined by (2.4), then Eq. (1.1) is oscillatory.

8



ATTIA and JADLOVSKÁ/Turk J Math

Proof Assume the contrary and let x(t) be a nonoscillatory solution of Eq. (1.1). Without loss of generality
assume that x(t) is eventually positive. By (2.7) from the proof of Lemma 2.2, we have

x(t)− x(θ(t)) + x(θ(t))

∫ t

θ(t)

p(w)e
∫ θ(t)

τ(w)
p(w1)

x(τ(w1))

x(w1)
dw1dw = 0. (2.21)

According to Lemma 2.1 and the nonincreasing nature of x(t) , we have, for any ϵ ∈ (0, λ(δ∗)) and t sufficiently
large,

x(τ(t))

x(t)
≥ x(θ(t))

x(t)
≥ λ(δ∗)− ϵ = Q0(t).

By Lemma 2.2, we are led to
x(τ(t))

x(t)
≥Qn(t), n ∈ N0. (2.22)

Substituting (2.22) into (2.21), we have∫ t

θ(t)

p(w)e
∫ θ(t)

τ(w)
p(w1)Qn(w1)dw1dw ≤ 1− x(t)

x(θ(t))
. (2.23)

Therefore,

lim sup
t→∞

∫ t

θ(t)

p(w)e
∫ θ(t)

τ(w)
p(w1)Qn(w1)dw1dw ≤ 1− lim inf

t→∞

x(t)

x(θ(t))
.

From this and (2.12), we obtain a contradiction to (2.20). The proof of the theorem is complete. 2

Theorem 2.6 Assume that θ(t) is strictly increasing. If there exist n ∈ N0 and an unbounded sequence
{rl}l∈N0 such that

∫ rl

θ(rl)

p(w)e
∫ θ(rl)

τ(w)
Qn(w1)p(w1)dw1dw ≥ 1−

∫ θ−1(rl)

rl
p(w)

∫ rl
τ(w)

p(w1)e
∫ θ(rl)

τ(w1)
p(w2)Qn(w2)dw2dw1dw

1−
∫ θ−1(rl)

rl
p(w)dw

, (2.24)

where θ−1 denotes the inverse of θ , Q0(t) = ρ and {Qn(t)}n∈N is defined by (2.4), then Eq. (1.1) is oscillatory.

Proof Assume the contrary and let x(t) be a nonoscillatory solution of Eq. (1.1). Without loss of generality
assume that x(t) is eventually positive. By (2.7) from the proof of Lemma 2.2, we have

x(t)− x(θ(t)) + x(θ(t))

∫ t

θ(t)

p(w)e
∫ θ(t)

τ(w)
p(w1)

x(τ(w1))

x(w1)
dw1dw = 0. (2.25)

By using the nonincreasing nature of x(t) and Lemma 2.1, we obtain

x(τ(t))

x(t)
≥ x(θ(t))

x(t)
≥ ρ = Q0(t).

By Lemma 2.2 , we are led to
x(τ(t))

x(t)
≥ Qn(t), n ∈ N0. (2.26)

9
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Substituting into (2.25), we get

∫ t

θ(t)

p(w)e
∫ θ(t)

τ(w)
p(w1)Qn(w1)dw1dw ≤ 1− x(t)

x(θ(t))
(2.27)

for all sufficiently large t . By (2.15) and x(t) > 0 , we have

x(θ(t))

x(θ2(t))
>

∫ t

θ(t)
p(w)

∫ θ(t)

τ(w)
p(w1)e

∫ θ2(t)

τ(w1)
p(w2)

x(τ(w2))

x(w2)
dw2dw1dw

1−
∫ t

θ(t)
p(w)dw

.

From the above inequality, (2.26) and the strictly increasing nature of θ(t) , we obtain

x(t)

x(θ(t))
>

∫ θ−1(t)

t
p(w)

∫ t

τ(w)
p(w1)e

∫ θ(t)

τ(w1)
p(w2)Qn(w2)dw2dw1dw

1−
∫ θ−1(t)

t
p(w)dw

.

This together with (2.27) implies that

∫ t

θ(t)

p(w)e
∫ θ(t)

τ(w)
p(w1)Qn(w1)dw1dw < 1−

∫ θ−1(t)

t
p(w)

∫ t

τ(w)
p(w1)e

∫ θ(t)

τ(w1)
p(w2)Qn(w2)dw2dw1dw

1−
∫ θ−1(t)

t
p(w)dw

for all sufficiently large t , which contradicts (2.24) and completes the proof of the theorem. 2

3. Numerical examples
In this section, we give two examples illustrating the applications of our results, showing their strength in both
cases of monotone and nonmonotone delays.

Example 3.1 Consider the differential equation

x′(t) + p(t)x(τ(t)) = 0, t ≥ 1, (3.1)

where

τ(t) =

 t− 1 if t ∈ [2l, 2l + 1]
−t+ 4l + 1 if t ∈ [2l + 1, 2l + 1.001]
1001
999 t− 4

999 l −
1003
999 if t ∈ [2l + 1.001, 2l + 2]

, l ∈ N0,

and

p(t) =


1
e if t ∈ [ci, di](
µ− 1

e

)
(t− di) +

1
e if t ∈ [di, di + 1]

µ if t ∈ [di + 1, di + 5]
( 1

e−µ)(t−di−5)

ci+1−di−5 + µ if t ∈ [di + 5, ci+1]

, i ∈ N0,

where µ ≥ 1
e and {di} is a sequence of positive integers such that di > ci+3 , ci+1 > di+5 and limi→∞ ci = ∞ .

Let θ(t) = t− 1 . It is clear that
t− 1.002 ≤ τ(t) ≤ t− 1

10
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and

δ = lim inf
t→∞

∫ t

τ(t)

p(w)dw = lim inf
t→∞

∫ t

θ(t)

p(w)dw = lim
i→∞

∫ di

θ(di)

p(w)dw =
1

e
= δ∗.

It follows that λ (δ) = e . Let

R(t) =

∫ t

θ(t)

p(w)

∫ θ(t)

τ(w)

p(w1)e
(λ(δ∗)−ϵ)

∫ θ2(t)

τ(w1)
p(w2)dw2dw1dw.

Therefore,

lim inf
t→∞

R(t) = lim
i→∞

∫ di

θ(di)

p(w)

∫ θ(di)

τ(w)

p(w1)e
(λ(δ)−ϵ)

∫ θ2(di)

τ(w1)
p(w2)dw2dw1dw

≥ lim
i→∞

∫ di

di−1

1

e

∫ θ(di)

w−1

1

e
e(λ(δ)−ϵ)

∫ di−2

w1−1
1
e dw2dw1dw

=
e

λ(δ)−ϵ
e − λ(δ)−ϵ

e − 1

(λ (δ)− ϵ)
2 > 0.09719 = β,

where we put ϵ = 0.001 . Let

L(t) =

∫ t

θ(t)

p(w)e
∫ θ(t)

τ(w)
Q1(w1)p(w1)dw.

Then

L(di + 5)

≥
∫ di+5

θ(di+5)

p(w) exp

∫ θ(di+5)

w−1

p(w1) exp
(∫ w1−1

w1−1
p(w2)dw2

)
1−

∫ w1

w1−1
p(w2) exp

(∫ w1−1

w2−1
p(w3)Q0(w3)dw3

)
dw2

dw1

 dw

≥
∫ di+5

di+4

p(w) exp

∫ di+4

w−1

p(w1)

1−
∫ w1

w1−1
p(w2) exp

(∫ w1−1

w2−1
p(w3) (λ (δ)− ϵ) dw3

)
dw2

dw1

 dw

=

(
eD(−(λ(δ)−ϵ)+e(λ(δ)−ϵ)µ) − (λ (δ)− ϵ) eD − eD − e(λ(δ)−ϵ)µ + (λ (δ)− ϵ) + 1

)
e−D

(λ (δ)− ϵ)
,

where

D =
(λ (δ)− ϵ)µ

e(λ(δ)−ϵ)µ − (λ (δ)− ϵ)− 1
.

Consequently,

lim sup
t→∞

L(t) = lim
i→∞

L(di + 5) > 0.74 > 1−
1− δ −

√
(1− δ)

2 − 4β

2

for µ = 1
e + 0.01666 , which means that the condition (2.20) with n = 1 of Theorem 2.5 is satisfied. Therefore,

every solution of (3.1) is oscillatory. However, we will demonstrate that all the existing conditions mentioned

11
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in the introduction fail to do so. Let θ(t) = φ(t) (that is defined by (1.10)). Since

t− 1.002 ≤ τ(t) ≤ φ(t) ≤ t− 1,
1

e
≤ p(t) ≤ µ,

we have ∫ t

θ(t)

p(w) e
∫ θ(t)

τ(w)
p(w1) e

∫w1
τ(w1)

p(w2)dw2
dw1dw ≤

∫ t

t−1.002

µ e
∫ t−1
w−1.002

µ e
∫w1
w1−1.002

µdw2dw1dw

≤ e−
501µ
500

(
e

251µ
250 e

501µ
500 − e

µ
500 e

501µ
500

)
< 0.9999,

for all µ ≤ 1
e + 0.205 . Consequently, condition (1.7) is not satisfied for all µ ≤ 1

e + 0.205 . Clearly,

∫ t

θ(t)

p(w)e
(λ(δ)−ϵ)

∫ θ(t)

τ(w)
p(w1)dw1du ≤

∫ t

t−1.002

µeλ(δ)
∫ t−1
w−1.002

µdw1dw

≤ e−1+ 251e
250 µ − e−1+ e

500µ < 0.999

for all µ ≤ 1
e + 0.113 , it follows that condition (1.8) cannot be applied for all µ ≤ 1

e + 0.113 . In view of

Ψ0(t) = p(t)

(
1 +

∫ t

τ(t)

p(w)e
∫ t
τ(w)

p(w1) e
λ(δ)

∫w1
τ(w1)

p(w2)dw2
dw1dw

)

≤ µ

(
1 +

∫ t

t−1.002

µe
∫ t
w−1.002

µe
λ(δ)

∫w1
w1−1.002

µdw2dw1dw

)
< 2.58535

for all µ ≤ 1
e + 0.0794 , we get

lim sup
t→∞

∫ t

φ(t)

p(w)e
∫ φ(t)

τ(w)
p(w1) e

∫w1
τ(w1)

p(w2)Ψ0(w2)dw2
dw1dw < 1

for all µ ≤ 1
e +0.0794 . Then we conclude that condition (1.9) with n = 0 can not be applied for µ ≤ 1

e +0.0794 .
Finally, it is clear that

Ω1
1(t) ≤

∫ t

θ(t)

p(w)e
λ(δ)

∫ θ(t)

τ(w)
p(w1)dw1dw ≤

∫ t

t−1.002

µee
∫ t−1
w−1.002

µdw1dw < 0.687061

for all µ ≤ 1
e + 0.0184 , so that

C(t) =
1

1−
∫ t

θ(t)
p(w1) exp

(∫ θ(t)

τ(w1)
p(w2)

1−Ω1
1(w2)

dw2

)
dw1

< 4.29043, for all µ ≤ 1
e + 0.0184 .

Consequently,

lim sup
t→∞

(
Ω2

1(t) + C (θ(t))Ω2
2(t)

)
< 0.86157 < 1−B(δ) = 1− 1− δ −

√
1− 2δ − δ2

2
.

Therefore, condition (1.11) with n = 2 is not satisfied for all µ ≤ 1
e + 0.0184 .

12



ATTIA and JADLOVSKÁ/Turk J Math

The following example demonstrates the significance of one of our results, especially when δ = 0 , and
shows that condition (1.6) is not necessary for the oscillation of Eq. (1.1).

Example 3.2 Consider the differential equation

x′(t) + p(t)x(t− 1) = 0, t ≥ 1, (3.2)

where

p(t) =


0 if t ∈ [cl, dl]
γ (t− dl) if t ∈ [dl, dl + 1]
γ if t ∈ [dl + 1, dl + 6](

dl−t+6
cl+1−dl−6 + 1

)
γ if t ∈ [dl + 6, cl+1]

, l ∈ N0,

where γ ≥ 0 , dl > cl + 1 , cl+1 > dl + 6 and lim
l→∞

cl = ∞ .

Clearly,

lim inf
t→∞

∫ t

τ(t)

p(w)dw = lim
l→∞

∫ dl

τ(dl)

p(w)dw =

∫ dl

dl−1

p(w)dw = 0 = δ. (3.3)

From this and (1.4), it follows in Theorem 2.6 that Q0(t) = 1 .
Let θ(t) = τ(t) = t− 1 , rl = dl + 5 ,

I(t) =

∫ t

θ(t)

p(w)e
∫ θ(t)

τ(w)
Q1(w1)p(w1)dw1

and

I1(t) =

∫ θ−1(t)

t
p(w)

∫ t

τ(w)
p(w1)e

∫ θ(t)

τ(w1)
p(w2)Q1(w2)dw2dw1dw

1−
∫ θ−1(t)

t
p(w)dw

.

Therefore,

I1(rl) ≥
∫ dl+6

dl+5
p(w)

∫ dl+5

w−1
p(w1)e

∫ dl+4

w1−1 p(w2)dw2dw1dw

1−
∫ t+1

t
p(w)dw

=
eγ − γ − 1

1− γ
.

Also

I(rl) ≥
∫ dl+5

θ(dl+5)

p(w) exp

∫ θ(dl+5)

w−1

p(w1) exp
(∫ w1−1

w1−1
p(w2)dw2

)
1−

∫ w1

w1−1
p(w2) exp

(∫ w1−1

w2−1
p(w3)dw3

)
dw2

dw1

 dw

=

∫ dl+5

dl+4

γ exp

∫ dl+4

w−1

γ

1−
∫ w1

w1−1
γ exp

(∫ w1−1

w2−1
γdw3

)
dw2

dw1

 dw

=

(
e

γ(eγ−1)
−2+eγ − 2 e

γ
−2+eγ − eγ + 2

)
e−

γ
−2+eγ .

Therefore,

I(rl) + I1(rl) ≥
(
e

γ(eγ−1)
−2+eγ − 2 e

γ
−2+eγ − eγ + 2

)
e−

γ
−2+eγ +

eγ − γ − 1

1− γ
> 1.00054,
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for γ = 0.4488 . Then, according to Theorem 2.6, every solution of Eq. (3.2) is oscillatory for γ = 0.4488 .
Observe, however, that δ = 0 and

lim sup
t→∞

∫ t

τ(t)

p(w)dw = lim
l→∞

∫ dl+5

τ(dl+5)

p(w)dw = γ.

That is, none of the results in [12–14, 18, 20, 30–32] can be applied to Eq. (3.2) with γ < 1 .
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